A discontinuous Galerkin method by patch reconstruction for convection-diffusion-reaction problems over polytopic meshes
نویسندگان
چکیده
In this article, using the weighted discrete least-squares, we propose a patch reconstruction finite element space with only one degree of freedom per element. As approximation space, it is applied to discontinuous Galerkin methods upwind scheme for steady-state convection-diffusion-reaction problems over polytopic meshes. The optimal error estimates are provided in both diffusion-dominated and convection-dominated regimes. Furthermore, several numerical experiments presented verify theoretical estimates, well approximate boundary layers and/or internal layers.
منابع مشابه
Hybridized Discontinuous Galerkin Method for Convection-Diffusion-Reaction Problems
In this paper, we propose a new hybridized discontinuous Galerkin method for the convection-diffusion-reaction problems with mixed boundary conditions. The coercivity of the convection-reaction part is achieved by adding an upwinding term. We give error estimates of optimal order in the piecewise H1-seminorm. Furthermore, we show that the approximate solution of our scheme is close to that of t...
متن کاملhp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes
(2015) hp-version discontinuous Galerkin methods for advection-diffusion-reaction problems on polytopic meshes. Mathematical Modelling and Numerical Analysis. ISSN 0764-583X (In Press) The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. · To the extent reasonable and practicable the material made ava...
متن کاملA Discontinuous Galerkin Multiscale Method for Convection-diffusion Problems
We propose an extension of the discontinuous Galerkin local orthogonal decomposition multiscale method, presented in [14], to convection-diffusion problems with rough, heterogeneous, and highly varying coefficients. The properties of the multiscale method and the discontinuous Galerkin method allows us to better cope with multiscale features as well as interior/boundary layers in the solution. ...
متن کاملA Hybrid Mixed Discontinuous Galerkin Method for Convection-Diffusion Problems
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction...
متن کاملA Hybridizable Discontinuous Galerkin Method for Steady-State Convection-Diffusion-Reaction Problems
In this article, we propose a novel discontinuous Galerkin method for convectiondiffusion-reaction problems, characterized by three main properties. The first is that the method is hybridizable; this renders it efficiently implementable and competitive with the main existing methods for these problems. The second is that, when the method uses polynomial approximations of the same degree for bot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & mathematics with applications
سال: 2021
ISSN: ['0898-1221', '1873-7668']
DOI: https://doi.org/10.1016/j.camwa.2021.05.035